Discussion:
Fraudulent Confirmations of Einstein's Relativity
(too old to reply)
Pentcho Valev
2016-05-26 10:38:48 UTC
Permalink
http://cosmic.lbl.gov/more/SeanFottrell.pdf
Experiment 1: The lifetime of muons at rest (...) Some of these muons are stopped within the plastic of the detector and the electronics are designed to measure the time between their arrival and their subsequent decay. The amount of time that a muon existed before it reached the detector had no effect on how long it continued to live once it entered the detector. Therefore, the decay times measured by the detector gave an accurate value of the muon's lifetime. After two kinds of noise were subtracted from the data, the results from three data sets yielded an average lifetime of 2.07x 10^(-6)s, in good agreement with the accepted value of 2.20x 10^(-6)s."

http://www.physics.rutgers.edu/ugrad/389/muon/muon-rutgers.pdf
"In order to measure the decay constant for a muon at rest (or the corresponding mean-life) one must stop and detect a muon, wait for and detect its decay products, and measure the time interval between capture and decay. Since muons decaying at rest are selected, it is the proper lifetime that is measured. Lifetimes of muons in flight are time-dilated (velocity dependent), and can be much longer..."

Clearly the muons "at rest" are not at rest - they are undergoing a catastrophe. For that reason their lifetime is much shorter than the lifetime of "muons in flight" (which are not undergoing a catastrophe). There is no time dilation.

Pentcho Valev
Sam Wormley
2016-05-26 14:10:23 UTC
Permalink
Post by Pentcho Valev
Clearly the muons "at rest" are not at rest - they are undergoing a catastrophe. For that reason their lifetime is much shorter than the lifetime of "muons in flight" (which are not undergoing a catastrophe). There is no time dilation.
Oh Pentcho, how can you be is such denial?


Time Dilation of Moving Particles
https://en.m.wikipedia.org/wiki/Time_dilation_of_moving_particles

Cosmic Muons
Let me illustrate time dilation AND length contraction with
cosmic muons.

Loading Image...
--
sci.physics is an unmoderated newsgroup dedicated
to the discussion of physics, news from the physics
community, and physics-related social issues.
Sam Wormley
2016-05-26 14:14:59 UTC
Permalink
Post by Pentcho Valev
There is no time dilation.
Time dilation is observed in particle decay in distant supernovae
events, particle accelerators, GNSS, etc. It's everywhere, it's
everywhere.
--
sci.physics is an unmoderated newsgroup dedicated
to the discussion of physics, news from the physics
community, and physics-related social issues.
Pentcho Valev
2016-05-26 19:14:32 UTC
Permalink
Einstein's relativity cannot survive unless experimental fraud regularly boosts it. Eddington's 1919 fraud, Eddington and Adams' 1925 fraud, Pound and Rebka's 1960 fraud, Alväger's 1964 fraud, Hafele and Keating's 1971 fraud... the list is long. Just an example:

http://preterism.ning.com/forum/topics/can-we-trust-the-data
"Consider the case of astronomer Walter Adams. In 1925 he tested Einstein's theory of relativity by measuring the red shift of the binary companion of Sirius, brightest star in the sky. Einstein's theory predicted a red shift of six parts in a hundred thousand; Adams found just such an effect. A triumph for relativity. However, in 1971, with updated estimates of the mass and radius of Sirius, it was found that the predicted red shift should have been much larger - 28 parts in a hundred thousand. Later observations of the red shift did indeed measure this amount, showing that Adams' observations were flawed. He "saw" what he had expected to see."

http://adsabs.harvard.edu/abs/2010AAS...21530404H
"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). It has been known for some time that both Eddington's estimate and Adams' measurement underestimated the true Sirius B gravitational redshift by a factor of four."

http://adsabs.harvard.edu/full/1980QJRAS..21..246H
"...Eddington asked Adams to attempt the measurement. (...) ...Adams reported an average differential redshift of nineteen kilometers per second, very nearly the predicted gravitational redshift. Eddington was delighted with the result... (...) In 1928 Joseph Moore at the Lick Observatory measured differences between the redshifts of Sirius and Sirius B... (...) ...the average was nineteen kilometers per second, precisely what Adams had reported. (...) More seriously damaging to the reputation of Adams and Moore is the measurement in the 1960s at Mount Wilson by Jesse Greenstein, J.Oke, and H.Shipman. They found a differential redshift for Sirius B of roughly eighty kilometers per second."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "Le monde entier a cru pendant plus de cinquante ans à une théorie non vérifiée. Car, nous le savons aujourd'hui, les premières preuves, issues notamment d'une célèbre éclipse de 1919, n'en étaient pas. Elles reposaient en partie sur des manipulations peu avouables visant à obtenir un résultat connu à l'avance, et sur des mesures entachées d'incertitudes, quand il ne s'agissait pas de fraudes caractérisées. (...) Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Pentcho Valev
Pentcho Valev
2016-05-27 14:08:45 UTC
Permalink
Doublethink in Einstein schizophrenic world:

https://en.wikipedia.org/wiki/Pound%E2%80%93Rebka_experiment
"The Pound–Rebka experiment is a well known experiment to test Albert Einstein's theory of general relativity. It was proposed by Robert Pound and his graduate student Glen A. Rebka Jr. in 1959,[1] and was the last of the classical tests of general relativity to be verified (in the same year). It is a gravitational redshift experiment, which measures the redshift of light moving in a gravitational field, or, equivalently, a test of the general relativity prediction that clocks should run at different rates at different places in a gravitational field. It is considered to be the experiment that ushered in an era of precision tests of general relativity."

http://www.einstein-online.info/spotlights/redshift_white_dwarfs
"One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. (...) The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."

http://ebooks.adelaide.edu.au/o/orwell/george/o79n/chapter2.9.html
"Doublethink means the power of holding two contradictory beliefs in one's mind simultaneously, and accepting both of them. The Party intellectual knows in which direction his memories must be altered; he therefore knows that he is playing tricks with reality; but by the exercise of doublethink he also satisfies himself that reality is not violated. The process has to be conscious, or it would not be carried out with sufficient precision, but it also has to be unconscious, or it would bring with it a feeling of falsity and hence of guilt. Doublethink lies at the very heart of Ingsoc, since the essential act of the Party is to use conscious deception while retaining the firmness of purpose that goes with complete honesty. To tell deliberate lies while genuinely believing in them, to forget any fact that has become inconvenient, and then, when it becomes necessary again, to draw it back from oblivion for just so long as it is needed, to deny the existence of objective reality and all the while to take account of the reality which one denies - all this is indispensably necessary."

Pentcho Valev
Odd Bodkin
2016-05-27 14:14:12 UTC
Permalink
Post by Pentcho Valev
https://en.wikipedia.org/wiki/Pound%E2%80%93Rebka_experiment
http://www.einstein-online.info/spotlights/redshift_white_dwarfs
http://ebooks.adelaide.edu.au/o/orwell/george/o79n/chapter2.9.html
Pentcho, you spend hours mining for conflicting information about
physics on the web, which is a little like finding dirt in your backyard
-- it's easy and pointless.

Instead of complaining about conflicting information on the web, why
don't you start reading some good books about the subject?
--
Odd Bodkin --- maker of fine toys, tools, tables
Pentcho Valev
2016-05-28 15:51:06 UTC
Permalink
All experiments allegedly confirming gravitational time dilation are fraudulent - see a discussion between me and "Jbar" in Science:

http://www.sciencepubs.com/news/sifter/thanks-gravity-earth-s-core-25-years-younger-its-surface
"Thanks to gravity, Earth’s core is 2.5 years younger than its surface"

Pentcho Valev
Sam Wormley
2016-05-28 18:28:19 UTC
Permalink
Post by Pentcho Valev
All experiments allegedly confirming gravitational time dilation are fraudulent
Gravitational Time Dilation is observer dependent, Pentcho.
https://en.wikipedia.org/wiki/Gravitational_time_dilation
Post by Pentcho Valev
Gravitational time dilation is a form of time dilation, an actual
difference of elapsed time between two events as measured by
observers situated at varying distances from a gravitating mass. The
weaker the gravitational potential (the farther the clock is from the
source of gravitation), the faster time passes. Albert Einstein
originally predicted this effect in his theory of relativity[1] and
it has since been confirmed by tests of general relativity.
This has been demonstrated by noting that atomic clocks at differing
altitudes (and thus different gravitational potential) will
eventually show different times. The effects detected in such
Earth-bound experiments are extremely small, with differences being
measured in nanoseconds. Demonstrating greater effects would require
greater distances from the Earth and/or a larger gravitational
source.
Gravitational time dilation was first described by Albert Einstein in
1907[2] as a consequence of special relativity in accelerated frames
of reference. In general relativity, it is considered to be a
difference in the passage of proper time at different positions as
described by a metric tensor of spacetime. The existence of
gravitational time dilation was first confirmed directly by the
Pound–Rebka experiment in 1959.
--
sci.physics is an unmoderated newsgroup dedicated
to the discussion of physics, news from the physics
community, and physics-related social issues.
Pentcho Valev
2016-05-30 19:40:54 UTC
Permalink
Eddington's 1919 fraud:

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity
"The eclipse experiment finally happened in 1919. Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einstein's death in 1955, scientists still had almost no evidence of general relativity in action."

http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's. (...) As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him."

http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
Frederick Soddy: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth."

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html
New Scientist: Ode to Albert: "Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.epubsbook.com/books/2203_7.html
Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "L'expédition britannique envoie deux équipes indépendantes sur le trajet de l'éclipse : l'une dirigée par Andrew Crommelin dans la ville de Sobral, dans le nord du Brésil, l'autre conduite par Eddington lui-même sur l'île de Principe, en face de Libreville, au Gabon. Le matériel embarqué est des plus sommaires au regard des moyens actuels : une lunette astronomique de seulement 20 cm de diamètre en chaque lieu, avec un instrument de secours de 10 cm à Sobral. Pour éviter l'emploi d'une monture mécanique trop lourde à transporter, la lumière est dirigée vers les lunettes par de simples miroirs mobiles, ce qui se révélera être une bien mauvaise idée. La stratégie est assez complexe. Il s'agit d'exposer des plaques photographiques durant l'éclipse pour enregistrer la position d'un maximum d'étoiles autour du Soleil, puis de comparer avec des plaques témoins de la même région du ciel obtenues de nuit, quelques mois plus tard. La différence des positions entre les deux séries de plaques, avec et sans le Soleil, serait la preuve de l'effet de la relativité et le résultat est bien sûr connu à l'avance. Problème non négligeable : la différence attendue est minuscule. Au maximum, au bord même du Soleil, l'écart prévu est seulement de un demi dix-millième de degré, soit très précisément 1,75 seconde d'arc (1,75"), correspondant à l'écart entre les deux bords d'une pièce de monnaie observée à 3 km de distance ! Or, quantités d'effets parasites peuvent contaminer les mesures, la qualité de l'émulsion photographique, les variations dans l'atmosphère terrestre, la dilatation des miroirs... Le jour J, l'équipe brésilienne voit le ciel se dégager au dernier moment mais Eddington n'aperçoit l'éclipse qu'à travers les nuages ! Sa quête est très maigre, tout juste deux plaques sur lesquelles on distingue à peine cinq étoiles. Pressé de rentrer en Angleterre, Eddington ne prend même pas la précaution d'attendre les plaques témoins. Les choses vont beaucoup mieux à Sobral : 19 plaques avec plus d'une dizaine d'étoiles et huit plaques prises avec la lunette de secours. L'équipe reste sur place deux mois pour réaliser les fameuses plaques témoins et, le 25 août, tout le monde est en Angleterre. Eddington se lance dans des calculs qu'il est le seul à contrôler, décidant de corriger ses propres mesures avec des plaques obtenues avec un autre instrument, dans une autre région du ciel, autour d'Arcturus. Il conclut finalement à une déviation comprise entre 1,31" et 1,91" : le triomphe d'Einstein est assuré ! Très peu sûr de sa méthode, Eddington attend anxieusement les résultats de l'autre expédition qui arrivent en octobre, comme une douche froide : suivant une méthode d'analyse rigoureuse, l'instrument principal de Sobral a mesuré une déviation de seulement 0,93". La catastrophe est en vue. S'ensuivent de longues tractations entre Eddington et Dyson, directeurs respectifs des observatoires de Cambridge et de Greenwich. On repêche alors les données de la lunette de secours de Sobral, qui a le bon goût de produire comme résultat un confortable 1,98", et le tour de passe-passe est joué. Dans la publication historique de la Royal Society, on lit comme justification une simple note : "Il reste les plaques astrographiques de Sobral qui donnent une déviation de 0,93", discordantes par une quantité au-delà des limites des erreurs accidentelles. Pour les raisons déjà longuement exposées, peu de poids est accordé à cette détermination." Plus loin, apparaît la conclusion catégorique: "Les résultats de Sobral et Principe laissent peu de doute qu'une déviation de la lumière existe au voisinage du Soleil et qu'elle est d'une amplitude exigée par la théorie de la relativité généralisée d'Einstein." Les données gênantes ont donc tout simplement été escamotées."

Pentcho Valev
Helmut Wabnig
2016-05-30 20:18:20 UTC
Permalink
On Mon, 30 May 2016 12:40:54 -0700 (PDT), Pentcho Valev
Post by Pentcho Valev
As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data
Pentcho lives in the year 1919, but we have 2016 now.


w.

Loading...